Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects
نویسندگان
چکیده
The quest for enhancing agricultural yields due to increased pressure on food production has inevitably led the indiscriminate use of chemical fertilizers and other agrochemicals. Biofertilizers are emerging as a suitable alternative counteract adverse environmental impacts exerted by synthetic facilitate overall growth yield crops in an eco-friendly manner. They contain living or dormant microbes, which applied soil used treating crop seeds. One foremost candidates this respect is rhizobacteria. Plant promoting rhizobacteria (PGPR) important cluster beneficial, root-colonizing bacteria thriving plant rhizosphere bulk soil. exhibit synergistic antagonistic interactions with microbiota engage array activities ecological significance. promote facilitating biotic abiotic stress tolerance support nutrition host plants. Due their active endorsing activities, PGPRs considered hazardous fertilizers. biofertilizers biological approach toward sustainable intensification agriculture. However, application increasing several pros cons. Application potential that perform well laboratory greenhouse conditions often fails deliver expected effects development field settings. Here we review different types PGPR-based biofertilizers, discuss challenges faced widespread adoption deliberate prospects using
منابع مشابه
Plant growth promoting Rhizobacteria (PGPR): a review
Soil microbial communities are often difficult to characterize, mainly because of their immense phenotypic and genotypic diversity. In the last ten years, a number of PGPR that have been identified has seen a great boost, mainly because the role of the rhizosphere as an ecological unit has gained importance in the functioning of the biosphere and also because mechanisms of action of PGPR have b...
متن کاملPlant growth-promoting rhizobacteria (PGPR): emergence in agriculture.
Plant growth-promoting rhizobacteria (PGPR) are the rhizosphere bacteria that can enhance plant growth by a wide variety of mechanisms like phosphate solubilization, siderophore production, biological nitrogen fixation, rhizosphere engineering, production of 1-Aminocyclopropane-1-carboxylate deaminase (ACC), quorum sensing (QS) signal interference and inhibition of biofilm formation, phytohormo...
متن کاملPlant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents
Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria (PGPR). PGPR are highly diverse and in this review we focus on rhizobacteria as biocontrol agents. Their effects can occur via local antagonism to soil-borne pathogens or by induction of systemic resistance against pathogens throughout the entire plant. Several substances produced...
متن کاملPlant Growth-promoting Rhizobacteria: Potential Green Alternative for Plant Productivity
Use of plant growth promoting rhizobacteria (PGPR) for the benefits of agriculture is gaining worldwide importance and acceptance and appears to be the trend for the future. PGPR are bioresources which may be viewed as a novel and potential tool for providing substantial benefits to the agriculture. These beneficial, free-living bacteria enhance emergence, colonize roots, stimulate growth and e...
متن کاملThe Effect of Plant Growth Promoting Rhizobacteria (PGPR) on Germination, Seedling Growth and Yield of Maize
The effect of plant growth-promoting rhizobacteria (PGPR) on seed germination, seedling growth and yield of field grown maize were evaluated in three experiments. In these experiments six bacterial strains include P.putida strain R-168, P.fluorescens strain R-93, P.fluorescens DSM 50090, P.putida DSM291, A.lipoferum DSM 1691, A.brasilense DSM 1690 were used. Results of first study showed seed I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sustainability
سال: 2021
ISSN: ['2071-1050']
DOI: https://doi.org/10.3390/su13031140